Application of artificial neural networks to weighted interval Kalman filtering

نویسندگان

  • Amit Motwani
  • Sanjay K. Sharma
  • Robert Sutton
  • Phil F. Culverhouse
چکیده

The interval Kalman filter is a variant of the traditional Kalman filter for systems with bounded parametric uncertainty. For such systems, modelled in terms of intervals, the interval Kalman filter provides estimates of the system state also in the form of intervals, guaranteed to contain the Kalman filter estimates of all point-valued systems contained in the interval model. However, for practical purposes, a single, point-valued estimate of the system state is often required. This point value can be seen as a weighted average of the interval bounds provided by the interval Kalman filter. This article proposes a methodology based on the application of artificial neural networks by which an adequate weight can be computed at each time step, whereby the weighted average of the interval bounds approximates the optimal estimate or estimate which would be obtained using a Kalman filter if no parametric uncertainty was present in the system model, even when this is not the case. The practical applicability and robustness of the method are demonstrated through its application to the navigation of an uninhabited surface vehicle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensorless Speed Control of Double Star Induction Machine With Five Level DTC Exploiting Neural Network and Extended Kalman Filter

This article presents a sensorless five level DTC control based on neural networks using Extended Kalman Filter (EKF) applied to Double Star Induction Machine (DSIM). The application of the DTC control brings a very interesting solution to the problems of robustness and dynamics. However, this control has some drawbacks such as the uncontrolled of the switching frequency and the strong ripple t...

متن کامل

Motion detection by a moving observer using Kalman filter and neural network in soccer robot

In many autonomous mobile applications, robots must be capable of analyzing motion of moving objects in their environment. Duringmovement of robot the quality of images is affected by quakes of camera which cause high errors in image processing outputs. In thispaper, we propose a novel method to effectively overcome this problem using Neural Networks and Kalman Filtering theory. Thistechnique u...

متن کامل

Application of artificial neural networks on drought prediction in Yazd (Central Iran)

In recent decades artificial neural networks (ANNs) have shown great ability in modeling and forecasting non-linear and non-stationary time series and in most of the cases especially in prediction of phenomena have showed very good performance. This paper presents the application of artificial neural networks to predict drought in Yazd meteorological station. In this research, different archite...

متن کامل

Application of Artificial Neural Networks for Analysis of Flexible Pavements under Static Loading of Standard Axle

In this study, an artificial neural network was developed in order to analyze flexible pavement structure and determine its critical responses under the influence of standard axle loading. In doing so, more than 10000 four-layered flexible pavement sections composed of asphalt concrete layer, base layer, subbase layer, and subgrade soil were analyzed under the impact of standard axle loading. P...

متن کامل

Adaptive Filtering based on Recurrent Neural Networks

Kalman filter is an optimal filtering solution in certain cases, however, it is more often than not, regarded as a non-robust filter. The slight mismatch in noise statistics or process model may lead to large performance deterioration and the loss of optimality. This research paper proposes an alternative method for robust adaptive filtering concerning lack of information of noise statistics. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Systems & Control Engineering

دوره 228  شماره 

صفحات  -

تاریخ انتشار 2014